# A NEW SPECIES OF MOSQUITO IN CALIFORNIA, AEDES (OCHLEROTATUS) BICRISTATUS 

(Diptera, Culicidae) 1,2

By Ernestine B. Thurman ${ }^{3}$ and Eric C. Winkler ${ }^{4}$

During rontine inspections associated with the mosquito control projects of the Lake County Mosquito Abatement District, third and fourth instar larvae of a new species of mosquito were collected by the junior author near Kelseyville, on February 21, 1950, and forwarded to the IdentifieationEvaluation Unit of the Burean of Vector Control for further study. On confirmation by Dr. Alan Stone, Bureau of Entomology and Plant Quarantine, U. S. Department of Agriculture, of the undescribed status of the species, subsequent collections were made in the area surrounding C'lear Lake. Between February 21 and April 21, 294 larvae and pupae were collected. From these, 37 males and 92 females were reared, 26 of which were in correlated series. In addition, one male and three females (two biting) were collereded in the field. Associated species collected during the study were Culiseta incidens (Thomson, 1868), Aedes varipalpus (Coquillett, 1902), and Aedes sp.

Lake County, with an area of 1,256 square miles, is a region composed of mountains, small valleys, arroyos, and lakes, fitted into the topography of the Coastal Range. The ecological situations represented here are typical of the Upper Sonoran and Transitional Zones of Northern California.

During Deeember, 1949, through early February 1950. Lake County was subjected to short periods of subfreezing temperatures, intermittent rains, and light snows. The snow usually melted within a few hours at lower elevations (1300 ft .), while at Loch Lomond ( 2600 ft . elevation) 6 inches of snow remained for some 5 days, and an inch of ice was present until the middle of Jannary on some of the shallow pools in flooded meadows. The early spring rains were followed by an umusually dry period. During this time many of the roadside ditches became dry, while some of the meadows, fed by seepage, remained flooded for over 2 months.

[^0]

The trpe locality near Kelseyville, (Township 13 North, Range 9 West, Sections 11 and 12, elevation 1390 ft .) consisted of a grassy roadside diteh and pools in an adjacent flooded meadow. The water depth varied from 3 to 10 inches, and pII readings ranged from 6.7 to 8.0. The emergent vegetation, consisting chiefly of meadow grasses and semi-aquatic weeds, varied from sparse to dense with only a small amount of flotage. In this locality larvae and pupae were collected in full and partial sunlight.

Larrae and pupae were collected by the junior author at 12 sites, all somewhat similar to the type locality, from Blue Lakes, northeast of Clear Lake, south to Loch Lomond, and east to Clearlake Highlands and the junction of Highways No. 53 and No. 20. An additional collection mate by John R. Walker of the Bureau of Vector Control from a 5 -acre flooded, grassy meadow at Loch Lomond on April 21, included one fourth instar larva, 55 pupae, and two females (biting). These were taken in the shade of ponderosa pines on the west side of the pond, where the water was 4 to 6 inches deep.

Aedes (Ochlerotatus) bicristatus, new species ${ }^{\bar{\sigma}}$
Larva (Plate 3.5). Head (fig. A) wider than long. Antemna about half as long as head, slightly spiculated; antennal tuft (at) multiple, inserted near middle, not reaching tip of shaft. Hearl hairs: preantennal (A) multiple, babbed; lower (B) and upper (C) double; postclypeal (d) double or triple, mimute; sutural (e), trans-sutural (f), and supraorbital (g) single. Prothoracic hair \#1 single or doblle, twice as long as antema. Mesothoracic hairs: \#1 donble; \#: single, both inconspicuons; \#3 single, long; \#4 double, long. Lateral abdominal hairs single or double on segments III-VII. Comb (C, fig. B) of eighth segment consisting of 4 thom-shaped scales; individual seale ( $\mathbf{C}-\mathbf{S}$ ) with a central spine longer than the base; minute, lateral spinules near base. Eighth segment lair tufts: alpha multiple; gemma and cpsilon multiple, barbed;
sTerminology used in description follows that employed hy Carpenter, Middlekanff and Chamberlain, 1946.

[^1]

Plate 36. Aedes (Ochlerotatus) bicristatus, pupa
Fig. A, abdomen and paddles with setae numbered on segments I, IV and VIII following Knight and Chamberlain, 1948. Fig. B, metanotum. Fig. C, dorso-anterior portion of cephalothoracic sheath posterior to head sheath, hairs $4,5,6$ and 7 are dorsal to antemnal sheath, and 8 and 9 posterior to the trumpets, T. Fig. D, head sheath showing antero-ventral hairs 1, 2 and 3, AS-antemal sheath, PS-palpal sheath, $\mathbf{P}$-proboseis sheath. All figures $60 \times$, drawn with the aid of a camera lucida.
beta and delta single. Siphon (S): length, 3:1; normal pecten (P) on basal third; individual tooth (P-T) with 1-3 minnte denticles; one heary, smooth, detached tooth; siphonal rentral tuft (SVT) multiple, barbed, as long as basal width of siphon, inserted between detached and normal teeth; lateral tuft (LT) quadruple, fine, almost as long as detached tooth, inserted between and dorsal to detached and normal teeth; subdorsal tuft (SDT) double, slightly longer than dorsal preapical spine (DPS), inserted dorso-laterally at preapieal fifth. Anal segment: longer than wide; anal dorsal plate (DP) incomplete, covering $4 / 5$ lateral surface, deeply invaginated at ventral, apical third; lateral hair (LH) single, almost as long as dorsal plate; anal gills (AG) bluntly pointed, dorsal pair half the length of anal segment, longer than ventral pair; of dorsal brush (DB), upper caudal hair (UC) multiple and lower caudal hair (LC) single, $11 / 2$ times as long as upper; rentral brush (VB) well developed, three short tufts preceding the barred area.

PupA (Plate 36). Cephalothoracic hairs (figs. C and D) Nos. 1, 2, 3,万, 6,8 , and 9 single; Nos. 4 and 7 double; angle of palpal sheath (PS) rounded. Metathoracic hairs (fig. B): No. 10 multiple; Nos. 11 and 12 single. (haetotaxy of abdominal tergites and paddles as figured (fig. A).

Female. Medimm sized, black and white mosquito; abdomen, is mm; wing, 4 mm . Proboscis dark, unbanded, flaked with white seales to tip. Palpus dark, white flaked, $1 / 4$ as long as proboseis; preapical segment


Text Figure 1. Dorsal aspect of female mesonotum, Aedes bicristatus, S-scutum, SA-scutal angle, Sc-scutellum.

$1 / 3$ as long as apical segment; apical segment clothed on inner ventral surface with black hairs. Antcnna dark, first segment (lothed with white seales on dorsal surface. Torus white sealed on entire surface, integument dark. Occiput clothed with whitish, Hat seales; stout, black setae dorso-medially projecting forward between the eyes; light setae at vertex; lateral single row of stout dark setac curve orer eyes; light, erect, forked seales cover the basal, dorso-medial area with a few dark, erect forked scales intermixed and just posterior to dark simple setae. Thorax (Text figure 1): with 4 longitudinal lines of dark flat seales divided by narrow lines of light (tan or whitish) scales from anterior margin; medinm dark lines extend to prescutellar patch of light scales; sub-median lines widened posterior to sental angle, extend to scutellum; scutum (S) whitish scaled laterally, a narrow line continues sub-medially to scutellum; dark seales form a lateral patch to the scutal angle (SA) and in the prescutellar space; scutellum (Sc) with white seales and black bristles; acrostichal, dorso-central, prescutellar, scutellar, and supra-alar bristles are black and conspicnous; anterior pronotal lobes with white appressed seales, a few dark scales, black erect bristles, and rentral bristles light; propleura white scaled with many light bristles; coxa ${ }_{1}$ white scaled, few dark scales scattered in middle; posterior pronotal lobe clothed with white broad, appressed scales, few black, dorsal bristles, 3 light ventral bristles; hypostigial spot conspicuous, white scaled; spiracular bristles light; pre-alar bristlcs numerous, light; sternopleura clothed with white scales on dorsal area and posterior margin; sternopleura bristles numerous and light; cona white scaled, few light bristles; mesepimeron with white appressed scales, a large patch of fine, light upper mesepimeral bristles; 8 light lower mesepimeral bristles; meron bare; metapleura hare; metameron white scaled; coxa, white scaled with a row of light bristles. Halteres: midhalter and capitellum white scaled. Wing: dark, scales narrow; base of costal rein and radius, intermixed with white seales to humeral crosscein; white scales seatter to apex of costa: few light setae on dorsal surface of radius ${ }_{1}$ near humeral crossvein; three white scales on base of medial vein; cubital vein all dark; anal rein with white scales at base; fringe all dark, com-

Plate 37. Aedes (Ochlerotatus) bicristatus, male terminalia
Fig. A, internal structures ( $100 \times$ ), A-L-anal lohe, B-L—basal lobe, Bs-basistyle, B-P-hasal plate, Cl-F-claspette filament, Cl-S-claspette stem, Ds - dististyle, Ds-C - claw of dististyle, IX-T - ninth tergite, IXT-L-lobe of ninth tergite, $\mathbf{P h}$-phallosome, $\mathbf{P m}$-paramere, X-Stenth sternite. Figure B, basistyle ( $264 \times$ ) showing dorsal and ventral aspects of basal lobe, B-L. Fig. C, apical structures of right and left claspettes $(430 \times$ ) mounted at different angles to show sclerotized cap, $\mathbf{C}$, with its fingerlike projections on filament of claspette, $\mathbf{C l}-\mathbf{F}$, the partial cone-shaped filament, and its line of attachment to the open apex of claspette stem, A-Cl-S, with its scalloped edge and two setae. Fig. D, phallosome and related structures, $\mathbf{A}-\mathbf{M}$-anal membrane, $\mathbf{P h}$-phallosome, Pm-paramere, X-S-tenth sternite, XS-DA-dorsal arm of tenth sternite. All figures drawn with the aid of a camera tacida.
posed of a triple row of short, medium, and long scales; alula with one row of dark, oar-shaped, short seales; squama edged with numerous, fine, hair-like light scales; petiole shorter than 2nd marginal eell; mid crossvein separated from postcrior crossvein by less distance than length of posterior erossvein. Leg: unbanded; femur black and white flaked outside, all white inside, dark preapieally; kneespot white; tibia black and white flaked, dark apically; tarsal segments: I flaked; II dark; few white seales; III dark, very few white seales; IV and V dark. Abdominal segments: I elothed with large, broad, pointed white seales and long light bristles; II-VII dark with broad, white bands on lasal third, slightly widened at laterals, with scattered white seales apically on VI and VII; cerci dark; ïnter predominantly light sealed.

MALE. Coloration similar to that of female. Terminalia (Plate 37): Dististyle (Ds, fig. A) inserted at apex of basistyle, slightly swollen medially, few setae scattered near apex; claw of dististyle (Ds-C) tapered to point; basistyle (Bs) slender, almost three times the basal width, concave and open on inner surface; seales, fine spieules, and short and long setae on basal surface; long setae on apex; medianventral edge with a dense row of long setae; apical lobe (A-L) prominent with short setae; basal lobe (B-L, figs. A and B) large, dorsal surface with 7 or 8 long setae, lobe tapers ventrally, ventral point with a tuft of setae; tenth stemite (X-S, figs. A and D) with a hook-like point at apex: dorsal arm of tenth sternite (XS-DA) simple; anal membrane ( $\mathbf{A}-\mathbf{M}$ ) with 1 or 已 small setae at apex; phallosome ( $\mathbf{P h}$ ) conical, open rentrally, flared at base with lateral and basal projections, apex fringed; paramere ( $\mathbf{P m}$ ) simple, slightly knobled at apex; claspette (Cl-S and Cl-F, figs. A and C) long, slender, eylindrieal; claspette stem (Cl-S) five times the length of the filament, with fine setae from innerbasal fold to pre-apex; apex of stem of cla.spette (A-Cl-S) expanded, open, sealloped, bearing two setae; filament of elaspette (Cl-F) short, a partial cone, open on the inner aspeet, with a selerotized cap bearing finger-like projections, base of "one attached along outer rim of, and forming a semi-eircle at, the apex of the stem; ninth tergite (IX-T, fig. A) wider than long, base rounded laterally, deeply invaginated medially, narrowed medio-laterally to small lobes (IXT-L), separated by median-projection narrower than width of a lobe, each lobe bearing 5 or (6) short spines.

Type specimens have been deposited in the U. S. National Museum. Paratypes have been deposited in the collections of the California Academy of Sciences; University of California, Berkeley and Davis; Cornell University; Commmnicable Disease Center, Atlanta, Ga.; National Institutes of Health, Bethesda. Md.; United States Department of Agricnlture, Corrallis. Oregon; Burean of Vector Control; and the anthors.

Few variations of consequence were noted in the terminal structures of the males and the coloration of the females. On


Plate 3s. Aedes (Ochlerotatus) bicristatus, varlation in the NUMBERS OF DETACHED PECTEN TEETH, LENGTH OF SIPHONS, AND POSITIONS OF SIPHONAL TUFTS

Figs. A and B, subventral tuft apical to single detached tooth (specimens \#38-4 and \#38-6). Fig. C, subventral tuft basal to single detached tooth, siphon $4: 1$ (specimen \#38-7). Fig. D, subventral tuft between two detached teeth (specimen \#38-2). Fig. E, subventral tuft adjacent to single detached tooth (left side of specimen \#38-3). Fig. F, subventral tuft between two detached teeth, siphon 3:1 (right side of specimen $\# 38-3)$. All figures $60 \times$, drawn with the aid of a camera lucida.
the thorax the light scales may be drab golden as well as tan or white. In the female the palpi may be $1 / 5$ to $1 / 4$ the length of the proboscis. In the study of 139 larvae, with characters of both right and left sides being tabulated, variations were confined within a limited range. Lower and upper head hairs were occasionally barbed, single, double, triple, or combinations of the three with 84 per cent of the lowers and 82 per cent of the uppers being double. In prothoracic hair No. 1, 58 per cent were single; 20 per cent single and double; 21 per cent double; and 1 per cent triple. The number of comb scales ranged from 1 to 5 with 49 per cent having $t$ scales on both sides; 31 per cent, 4 and 5 scale combinations; and 11 per cent, 5 scales. Variations in the number of detached pecten teeth were from 0 to 4 with the greatest percentage falling within the category of single on both sides ( 58 per cent) ; 16 per cent, double on both sides; and 23 per
cent, single and double combinations. The position of the basal siphonal tuft in relation to the position and number of detached peeten teeth (Plate 38) was noted to be basal, adjacent, apical, and combinations of the three positions, with 42 per cent being basal; 19 per cent, basal and apieal; and 15 per cent, apical. In the number of hairs in the lateral siplonal tuft, the range included 0 to 4 with 16 per cent being double; 19 per cent, double and triple; 37 per cent, triple; and 12 per cent, triple and quadruple. The nmmber of hairs in the subdorsal tuft included 0 to 3 with $4 t$ per cent being single; 18 per cent, single and clouble; and 26 per cent, (louble. The lateral hair of the anal serment was the most constant character tabulated, 99 per cent being single.

In view of the narrow range of variations noted, it is felt that the species has become stabilized in its evolution and is indigenous to the localities described. Future investigations will probably reveal its presence in other similar localities which are flooded by melted snow or cold water. Three female specimens loaned by Dr. R. M. Bohart, two collected in Glen Ellen, Sonoma Countr, March 28, 1937 (N. W. Frazier) and the other in the Petrified Forest, Sonoma County, March 16, 1947 (R. M. Bohart), were too rubbed for positive identification ; however, it is possible that one or both of the specimens collected by Frazier may be bicristatus while the one collected by Bohart may represent an molescribed species. An additional eight females loaned by Dr. C. Don Girant, collected at Wroodside, San Mateo Countr, April 10, 1950, also too rubbed for identification, may possibly be bicristatus.

The study of bicristatus revealed a definite affinity to Aedes trichurus (Dyar, 1904) which occurs in wooded regions of southern Canada, and northern Tnited States from New York west to the Rocky Mountains. Dyar (1904, p. 170) provisionally described the species as a Culer on the "monsually hairy air tube of the larva, since it is the only species of the short-tubed group that has more than a single hair tuft." Matheson ( 1944 ) lists the larva of trichurus as having an incomplete anal plate, detached pecten teeth, siphonal tuft within the pecten, 3 or 4 minute hair tufts above the pecten, and 8 to 10 dorsal hair tufts; and the male claspette as a long, curving cylindrical stem, slightly expanded before the apex; filament very short, stout and bearing a series of parallel, transverse, elevated ridges.

The structures of the male terminals of trichurus are presented (Plate 39, figs. A, B, C, and D) in order to demonstrate the points of similarity in the two species and to clarify the figmes of the structures as shown by earlier workers. Dyar (1928) and Matheson (1944) have figured the basal
lobe to have both the ventral and dorsal setae on the dorsal surface with an accessory lobe or fold bearing two of the long setae. The basal lobe (fig. B) has 3 heavy setae on the dorsal surface and tapers to a ventral point covered with finer, shorter setae. The tenth sternite (fig. A) terminates in a curved point. The phallosome shows lateral projections at the base, and a fringed apex. The ninth tergite (fig. C) has a deep invagination in the base, slight lateral concavity, and a small apical projection between the lobes which bear 9 to 11 setae. The claspette shows a length proportion of 4 or $\overline{5}: 1$ between stem and filament comparable to bicristatus. The stem (Cl-S, fig. 4) is expanded preapically and the closed apex bears 2 distinct setae. The filament (Cl-F, fig. D) is nearer being a complete cone than in bicristatus, there being only a small opening on the inner surface near the base. Its sclerotized cap covers the apical portion and has transverse ridges rather than finger-like projections.

Aedes rusticus (Rossi, 1790), a widely distributed species of Europe (Marshall, 1938), is closely allied to these two American species, in that the larva has detached pecten teeth, the basal tuft within the pecten, on the siphon a small lateral tuft and three single dorsal hairs; and the male terminalia possesses a long claspette stem terminating in an open apex with two distinct setae, and a short cap-like filament partially sclerotized and with transverse ridges (Plate 39 , fig. $\mathbf{E}$ ).

Currently trichurus and rusticus are placed in the subgenus Ochilcrotatus Lyuch Arribalzaga. In 1930 Martini (Edwards, 1932) proposed Fcltidmus as the subgeneric name for Aedes diversus (Theobald, 1901) which Edwards (1932) lists as a symonym of rusticus. Eight informal groups (A, B, C, D, E, F, G, and $H$ ) of the species of Ochlerotatus were designated by Edwards ( 1932 ), who in some instances suggested names for the groups. Besides rusticus and trichurus. Group H (rustieus-group) inchudes Aedes lepidonotus Edwards, 1920 ; A. refiki Medjid, 1921 ; 1. stampari Apfelback, 1929 ; and A. subdiversus Martini, 1926. Of Group II, the authors have had the opportunity to study speeimens of only rusticus and trichurus.

In the large sugenus Ochlerotatus composed of many species, 118 listed by Edwards (1932) and 81 listed for the Amerieas by Vargas (1949), one group, now consisting of 7 species, is known to possess both larval (except stampari) and male terminal charaeters demonstrating definite affinities, and as a group to be distinctly different from all other species in the subgenus and genus. Species other than Group H described in the genus Acdes possess only one tuft of hair on the larval siphon and species placed in the subgenus


Ochlerotatus have claspettes of the male terminalia of varying forms with the filament described as being simple, lanceolate, blade-like, sickle-shaped, expanded at the base, middle, or apex, bearing retrorse teeth, finger-like projections, blunt or pointed recurving apices, and being almost as long as, or in the majority of the species, longer than the stem. From this brief study it is evident that a comprehensive re-evaluation of the basic systematic status of the gemus Aedes Meigen is needed with emphasis on the subgeneric groupings.

It is the consensus of some eminent workers who have studied bicristatus individually or as small groups (Dr. Alan Stone, United States National Musenm ; Dr. E. S. Ross, California Academy of Sciences; Harry D. Pratt, Scientist, and Deed C. Thurman, Jr., S. A. San., Communicable Discase Center. Public Health Service, Federal Security Agency; Mr. W. H. W. Komp, National Institutes of Health; Drs. Stanley B. Freeborn, Robert L. Usinger, E. Gorton Linsley, and Richard M. Bohart of the University of California; and Mr. Richard F. Peters, Bureau of Vector Control), and the authors that bicristatus may be placed in Edwards' Group H of the subgemus Ochlerotatus with the status of the group to remain unchanged until the time when a complete re-evaluation of the genus Aedes may be accomplished by an energetic and capable worker.

## Summary

The larva, pupa, female, and the male terminalia of Aedes (Ochlerotatus) bicristatus, new species, are described and figured. A total of 294 larvae and pupae, one male, and three females (two biting) was collected in Lake County between February 21 and April 21, 1950, from meadow pools and roadside ditches flooded by early spring rains following light

Plate 39. Aedes (Ochlerotatus) triohurus and Aedes (OchleroTATUS) RUSTICUS, MALE TERMINALIA

Figs. A-D, trichurus, Fig. E, rusticus. Fig. A, diagrammatic sketch of internal structures, A-L-anal lobe, A-M-anal membrane, B-L-basal lobe, Bs-basistyle, $\mathbf{B - P}$-basal plate, Cl-F-claspette filanent, Cl-S stem of claspette, Ds-dististyle, Ds-C-claw of dististyle, IB-F-inner basal fold, $\mathbf{P h}$-phallosome, $\mathbf{P m}$-paramere, $\mathbf{X}-\mathbf{S}$-tenth sternite. Fig. B , hasistyle enlarged showing dorsal and rentral aspects of basal lobe, B-L. Fig. C, ninth tergite, IX-T, and loles of ninth tergite, IXT-L, enlarged. Fig. D, apical structures of claspette enlarged to show sclerotized transverse ridges on the cone-shaped filament of claspette, Cl-F, and two setae on stem of claspette, Cl-S. Fig. E, apical structures of rusticus enlarged to show sclerotized area with transverse ridges on filament of claspette, Cl-F, and the apex of stem of claspette, A-Cl-S, with its two distinct setae. Figures D and E $430 \times$, drawn with the aid of a camera lucida.
snows and freezing weather. A total of 37 males and 92 females was reared, 26 of which were in correlated series. A brief discussion is presented of the definite affinities noted in the eharacters of the larva and male terminalia of the species to those of the species listed in Group H (rusticus-group) by Edwards (1932), and the sharp differences in the morphological eharacters of the group from those deseribed for other species of the subgenus Ochlerotatus, genus Aedes. The recommendation is made that a diligent and capable worker undertake a comprehensive study to re-evaluate the systematic position of Group II in relation to the subgenera of Aedes and the genera of Culieidae.

## Acknowledgnents

In addition to those persons listed in the text who gave liberally of their time in study of the species, review of the manuseript, and collection or loan of speeimens, the authors are grateful to Mr. Arve M. Dahl, Chief of Burean of Vector Control, for making possible this study ; Mr. Robert W. Jones, III, Burean of Vector Control, for reviewing the manuscript; and to Miss lhyllis T. Johnson of the Burean of Vector Control, and Mr. C. .J. Stojanovich of the Commmicable Disease Center, Public Health Service, for drawing the plates.

## Literature Cited

Carpenter, S. J., W. W. Middlekauff, and R. W. Chamberlain, 1946. The Mosquitoes of the Southern United States East of Oklahoma and Texas. Unis. Press, Notre Dame, Ind., 292 pp.
Dyar, H. G., 1904. The larva of Culex punctor Kirby, with notes on an allied form. Jour. N. Y. Ent. Soc., 12:170.
Dyar, H. G., 1928. Mosquitoes of the Americas. Carnegic Inst. Wash. Publ. No. 387, 616 pp.
Edwards, F. W., 193土. Genera Insectorum (P. Wytsman), "Diptera, Culicidae,' fase. 194. Bruxelles: V. Verteneuil and L. Desmet, 258 pp.
Knight, K. L. and R. W. Chamberlain, 1948. A new nomenclature for the chaetotaxy of the mosquito pupa, based on a comparative study of the genera (Diptera, Culicidae). Proc. Helm. Soc. Wash., 15(1):1-10.
Marshall, J. F., 1938. The British Mosquitoes. London, British Museum, Oxford Univ. Press., $3 \not 41 \mathrm{pp}$.
Matheson, R., 1944. Mosquitoes of North America. Comstock Pub. Co., Ithaca, N. Y., 314 pp.
Vargas, L., 1949. Lista de las especies Americanas de Aedes con referencias a los subgeneros y a la distribucion geografica. Revista del Instituto de Salubridad y Enfermedades Tropicales, 10(4):327. 344.


[^0]:    ${ }^{1}$ A contribution from the Bureau of Vector Control, California State Department of Public Health, the Lake County Mosquito Abatement District, and the Communicable Disease Center, Public Health Service, Federal Security Agency, Atlanta, Ga.

    2 Entire publication costs paid by Bureau of Vector Control, California State Department of Public Health.
    ${ }^{3}$ Entomologist, P.H.S., Bureau of Vector Control.
    ${ }^{4}$ Entomologist, Lake County Mosquito Abatement District.

[^1]:    Plate 35. Aedes (Ochlefotatus) bicristatus, fourth instar larva
    Fig. A, head and thorax; A-preantemal tuft, B-lower head hair, C-upper head hair, at-antemnal tuft, d-postelypeal hair, e-sutural hair, f-trans-sutural hair, g-supraorbital hair. Fig. B, teminal abdominal segments; VIII-eighth segment with alpha, beta, gamma, delta and epsilon hairs, AG-anal gills, C-comb scales, CS-comb seale (enlarged), DP-dorsal plate, DPS-dorsal preapical spine, LH-lateral hair, LT-lateral tuft, P-pecten teeth, PT-pecten tooth (enlarged), S—siphon, SDT-subdorsal tuft, SVT-subventral tuft, V-ralves, VBventral brush, DB-dorsal brush composed of LC-lower caudal and UC -upper caudal. Both figures $60 \times$, drawn with the aid of a camera lucida.

